Dreieck, Trapez und Parallelogramm können so allerhand!
\(A=g\cdot h \quad\quad\)
\((a-b)^2= a^2 - 2ab +b ²\)
\(r= \sqrt{A \over \pi}\)
\(h={2\cdot A \over g}\)
\(U= 2 \cdot \pi \cdot r\)
\(a+c= {2\cdot A \over h}\)
\(r = {d \over 2}\)
\(h = {2 \cdot A \over a+c}\)
\(U=d \cdot \pi\)
\(g = {A \over h}\)
\((a+b)^2= a^2 + 2ab +b ²\)
\(d = 2 \cdot r\)
\(A = {1\over 2} \cdot g \cdot h\)
\(r = {U \over 2 \cdot \pi}\)
\(A=\pi \cdot r^2\)
\((a+b)(a-b)=a^2 - b^2\)
\(h= {A \over g}\)
\(A = {a+c \over 2} \cdot h\)
\(d = {U \over \pi}\)
\(g = {2A \over h}\)
\(a = {2\cdot A \over h}-c \quad\) und \(\quad c = {2\cdot A \over h}-a\)